Decorrelation estimates for random discrete schrodinger operators in dimension one and applications to spectral statistics

نویسنده

  • Christopher Shirley
چکیده

The purpose of the present work is to establish decorrelation estimates for some random discrete Schrödinger operator in dimension one. We prove that the Minami estimates are consequences of the Wegner estimates and Localization. We also prove decorrelation estimates at distinct energies for the random hopping model and Schrödinger operators with alloy-type potentials. These results are used to give a description of the spectral statistics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

Spectral Statistics for Weakly Correlated Random Potentials

Abstract. We study localization and derive stochastic estimates (in particular, Wegner and Minami estimates) for the eigenvalues of weakly correlated random discrete Schrödinger operators in the localized phase. We apply these results to obtain spectral statistics for general discrete alloy type models where the single site perturbation is neither of finite rank nor of fixed sign. In particular...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

ar X iv : m at h - ph / 9 90 30 25 v 1 1 1 M ar 1 99 9 Dedicated to the 70 th birthday of Mikio

Introduction. During the last 3 years the present author made a series of works [1, 2, 3, 4, 5, 8, 6, 7, 9] dedicated to the study of the unusual spectral properties of low-dimensional continuous and discrete (difference) Schrodinger Operators. Some of these works were done in collaboration with A.Veselov, I.Taimanov and I.Dynnikov. First, let me briefly describe the list of problems discussed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017